
Journal of Mathematical Chemistry 19 (1996) 301-315 301 

Geometric theory of trigger waves - A dynamical 
system approach 

Peter  L. S imon and  Henr ik  Fa r k a s  

Institute of Physics, Technical University of Budapest, H-1521 Budapest, Hungary 

Received 4 July 1995 

We propose a geometric model for wave propagation in excitable media. Our model 
is based on the Fermat principle and it resembles that of Wiener and Rosenblueth. The 
model applies to the propagation of excitations, such as chemical and biological wave 
fronts, grass fire, etc. Starting from the Fermat principle, some consequences of the 
assumptions are derived analytically. It is proved that the model describes a dynamical 
system, and that the wave propagates along "ignition lines" (extremals). The theory is 
applied to the special cases of tube reactor and annular reactor. The asymptotic shape of 
the wave fronts is derived for these cases: they are straight lines perpendicular to the tube, 
and involutes of the central obstacle, respectively. 

1. I n t r o d u c t i o n  

The  first detai led geometr ical  descr ipt ion of  wave p r o p a g a t i o n  in an excitable 
m e d i u m  was publ i shed by Wiener  and  Rosenb lue th  in 1946 [20]. They  model led  the 
p r o p a g a t i o n  of  impulses in the nervous  system and cardiac  muscle.  Thei r  pos tu la tes  
were: 

(1) The  veloci ty  o f  p ropaga t i on  is cons tant ,  it depends nei ther  on the space nor  
the direct ion.  

(2) The  ampl i tude  o f  the process remains  cons tan t  and  exceeds the threshold .  

(3) The  points  o f  the m e d i u m  m a y  assume three states: 

(a) active s tate  (the points  in this state const i tu te  the f ron t  line), 

(b) r e f rac to ry  state (this state occurs in the rear o f  the front) ,  

(c) rest ing state (in this s tate  the point  is excitable). 

To  mode l  the p ropaga t i on  of  exci ta t ion sat isfying the above assumpt ion ,  they  
ass igned an epoch number to every point  to character ize  its state.  The  epoch n u m b e r  
u is a func t ion  of  space and  time: u(x, t). The rules for u are: 

(i) u(x, t) = 0, i f  x is in the active state at  the ins tant  t. Immed ia t e ly  af ter  tha t  u 
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increases linearly in time with a constant rate k until u reaches the value 1. 
Therefore, in the refractory state 0 < u < 1. 

(ii) u(x, t) = 1, if x is in the resting state. This value remains unchanged in time 
unless the point x "is in contact with 0" (that is with an active point). These 
rules govern the propagat ion of the front. 

We note that the latest rule is well defined in the case of  discrete cellular automa- 
ton, which is a widely used model for the numerical investigation of the wave propa- 
gation in excitable media. In our continuous model the term "contact"  is replaced 
by the topological concept "boundary point".  

Wiener and Rosenblueth detailed the consequences of their model for waves 
rotating in a closed circular ring (one-dimensional problem), and for waves propa- 
gating in a convex region of the plane and also in a convex region with convex 
obstacles (two-dimensional problems). Using the Huygens principle, they stated 
that "the successive wave fronts are perpendicular to a system of rays which repre- 
sent the position which may be assumed by stretched cords starting from the stimu- 
lated point and passing around all obstacles". That means for the case of one 
convex obstacle that  the front lines are involutes of that obstacle. 

One of  the most  widely studied fields of trigger waves is the chemical wave. In a 
reacting medium the concentration profiles give the basis of the description of  
waves. In contrast  to the theory of Wiener and Rosenblueth, for chemical waves the 
front lines are not  so straightforwardly defined; we can assign front lines, for exam- 
ple, to a given value or a local maximum value of the concentration of a given chem- 
ical component ,  or to the inflexion point of the concentration profile, and so on. In 
this context the width of the front can also be studied, see e.g. [14]. 

In the literature on the geometric theory of  chemical waves one can distinguish 
two main trends. The first one originates in the works of Luther (1906), 
Kolmogoroff ,  Petrovsky and Piscounoff (1937), and Fisher (1937) [12,15,16]. 
These works, belonging to that trend, start from the reaction-diffusion equation, 
and using singular perturbation theory they derive some qualitative properties of  
the wave front. A good review of  this method is given in [11,19], and in [5], where 
the eikonal equation is also derived. 

In the other trend, which originates in the epoch number concept of Wiener and 
Rosenblueth,  the authors investigate cellular automaton models. The usual models 
can describe the shape and velocity of  the waves [3,4,11 ], but there are models which 
simulate the dispersion relation and curvature effect, too [2]. 

Now we follow another route. We construct a simple mathematical  model for 
the wave propagation.  We use strictly defined terminology and assumptions which 
are different from those in Wiener and Rosenblueth's  theory in some respects. Our 
main goal is to embed the model into the dynamical systems theory. This model  is 
simpler to manage mathematically than the reaction-diffusion equation, but it can- 
not  describe some features of  the wave propagation. It is possible to develop a more  
realistic model especially considering the process of"resurrect ion" [17]. Some con- 
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sequences of this simple geometric theory have already been used to explain some 
experimental facts concerning wave propagation for the Belousov-Zhabotinsky 
system in modified membranes [9]. 

Here we consider only two-dimensional regions. Our assumptions are: 
(1) Any point of  the reactor V may assume three states: active, excitable, and 

dead. The set of the active points is denoted by A: this is the front line. The set of  the 
excitable points is denoted by E: this is the region in which wave propagat ion is pos- 
sible. The remainder part  of the reactor V consists of dead points. 

In this paper we will not consider the process of "resurrection", therefore the 
dead points remain dead forever. This restriction does not affect the problems we 
want to investigate (dynamical system property, extremals, asymptotic wave 
shape), but with this restriction we abdicate the investigation of  spiral waves and 
the dispersion relation. 

(2) The sets A and E depend on time. We assume that  any active point continu- 
ously activates the excitable points in its "contact"  neighbourhood.  To be more 
precise, let us denote the velocity of this activating process by v. To each curve % 
which starts from an active point P and of which all other points are excitable, we 
assign a time duration 

~= f ds/v, (1) 

which the propagat ion takes to go along the curve. After time T the point P and 
the inner points of 3' will be dead. The final points Q of 3' will be 

- dead if there exists another curve ~,* starting from an active point  (not necessarily 
P), going along excitable points and ending at the given point Q, which has a pro- 
pagation time ~-* < r, 

- active otherwise. 

This assumption is straightforward for propagation of grass fire [18]: the activa- 
tion at a point  is elicited by the first possible impulse, the later impulses have no 
effect at this point. Also, this assumption is essentially the same as the Fermat  prin- 
ciple for the propagat ion of  light. 

Hence we are able to determine the time dependence of the sets A and E. 
(3) We assume that the integral in (1) exists for all rectifiable curves (that is for 

curves with finite length). Furthermore,  we assume that the velocity v is a function 
of  the space and the direction (for a smooth curve, the direction is determined by 
the tangent), and v is positive and bounded. In this respect we allow more general 
cases than Wiener and Rosenblueth do (they restricted themselves to the case of  
constant  velocity). On the other hand, we exclude the cases when the velocity 
depends on the shape of  wave fronts, so we neglect the curvature effect. 

In section 2, we establish a simple geometrical model of chemical waves, and 
prove that this model has the dynamical system properties, which means that  the 
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evolution is autonomous.  Next  we consider the extremals, that  is the lines along 
which the activating process propagates. Finally, we apply our model to two simple 
kinds of  reactors. For  a tube reactor we determine the asymptotic  shape of  the wave 
front, it will be perpendicular to the tube. For  an annular  reactor  the asymptot ic  
shape of  the wave front is an involute of  the obstacle. We give an upper bound for 
the time when the shape exactly takes this involute form. 

2. D y n a m i c a l  sys tem a p p r o a c h  o f  the  wave  p r o p a g a t i o n  

We deal with wave propagat ion in the plane. A closed subset V of  the plane repre- 
sents the reactor,  that  is the region in which the wave can propagate.  Let E0, 
A0 C R 2 be a disjoint partit ion of  the set V: V = E0 0 A0. E0 denotes the excitable 
and A0 the active set at the initial instant. Let us assume that  the initial active set A0 
is a closed subset of  V. 

Let s(7) denote the length of  a rectifiable curve 7. In the following we shall con- 
sider the curves in V in the arc length parametr ic  form, that  is a curve 7 will be para- 
metrized by the interval [0, s(7)]. Let 

G := {7:  [0, s(7)] ~ V:  7 is rectifiable} 

be the set of  the rectifiable curves in the set V. 
Now we shall define a function 7-: G ~ R+, 7-(7 ) denotes the time that  the wave 

front  needs to pass along the curve 7. Let S I denote the unit circle in the plane, and 
let 

v :  V x S  1 ~ R +  

be a continuous velocity function, which gives the velocity of  the wave front  at a 
given point and in a given direction. This allows us to define the time 7-(7 ) as 
follows: 

f s('~O 1 7-(7) :---- , d t .  (2) 
J0 (t)) 

We can use this formula only for piecewise smooth  curves. However,  in general 
we do not  need the concrete form (2) for the propagat ion time 7-, but three essential 
properties of  it. We shall use a more  general definition. Let 7-: G --* R+ be a function 
which has the following three properties: 

(1) If'), C G a n d a  ~ [O,s(7)],then 

7-(7) = 7-(7110,.j) + 

where 7[ [a,b I denotes the restriction of  7 on the interval [a, b]. 
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(2) There exist positive numbers ml and m2, such that for every 7 E G 

mls(7) ~ r(7) ~<m2s(7) • 

(3) The function -i- is continuous, if the topology on G is induced by the 
Hausdorffmetr ic .  

We recall that in the Hausdorff  metric [6] the distance between the curves 3' and 
r/is 

d(7, ~7) := max{d'(7, r/), d'(r/, 7)},  

where 

d'(% r / ) :=  sup{inf{lrl(i3)-"/(a)] : fl E [0,s(rl)]} : a E [0,s(7)]}. 

Let us introduce the distance between the point x and the set A in the reactor V: 

d(x,A):=inf{r(f):~/EG, 7(O) EA,7(s(7))=x}, xE V, AC V. 

We shall prove that the distance between the points of  a curve and a given set 
changes continuously along the curve. 

L E M M A  1 

Let 7 E G and A C V. Then the function a H d(7(a) ,  A) is continuous in the 
interval [0, s(7)]. 

Proof 
We show that ifloL -/31 < c/2m2, then 

Id(7(a),A) - d(7(/3),A)l < e. (3) 

There is a curve 77 E G, such that z/(0 ) E A, ~7(s07)) = 7(c~) and 

< A) + 

Let/3 E [0, s(7)] such that Ic~ - 13] < e/2 m2. Let X E G be the connect ion of  r /and  
711~,~l, that  is the first part  of X is 77 and the second part  of  X is 71(~,~1, therefore the 
startlng point o f x  is in the set A, and the end point of it is 7(/3). Using the properties 
(1) and (2) of  the function "r we get 

a(7(/3),A) = < 

because 

~-(7[[~,~]) ~<m2 s(T[[~,~l) = m2 [c~ -/31 < e/2.  

Thus d(7(/3 ), A) - d(7(c~), A) < e, and changing the role ofc~ and/3 we get 

d(7(c~), A) - d(7(/3), A) < e. 
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These two inequalities together  give (3), which we had to prove. []  

N o w  we define the excitable set E(t, E0, A0), and the active set A(t, Eo, A0) at 
t ime t: 

E(t, E0, A0) := {x c V: a(x, Ao) > t}, (4a) 

A(t, Eo,Ao) := {x E V:  d(x, Ao) = t}. (4b) 

This defini t ion corresponds  to our assumpt ions  for the wave p ropaga t ion  process 
(see assumpt ions  (1) and (2) in the In t roduct ion)  and yields a determinist ic  model:  
the initial pair  (E0, A0) uniquely determines the pair (E, A) at any later time. N o w  
we show that  the determinist ic  model  given by (4) itself represents a dynamical  sys- 
tem. To do this we prove the wel l-known requirements  of dynamical  systems, 
namely  the consistency condi t ion  for the initial t ime and the group proper ty  
[1,13]. 

THEOREM 1 

(i) E(0, E0, A0) = E0, 

(ii) For  any t, s >~ 0 

A(O, Eo,Ao) = Ao. 

E(t + s, Eo,Ao) = E(s,E(t,  Eo, Ao),A(t, Eo,Ao)) and 

A(t + s, Eo, Ao) = A(s, E(t, Eo, Ao), A(t, Eo, Ao)). 

Proof 
(i) E(0, Eo, Ao) C Eo is obvious, and Eo C E(0, Eo, Ao) follows f rom the closeness 

of  the set Ao. 
A(O, Eo,Ao) C Ao follows f rom the closeness of  the set Ao, and 

Ao C A(0, Eo, Ao) is obvious.  
(ii) First  we prove 

E(t + s, E0, Ao) C E(s, E(t, Eo, Ao), A(t, Eo, Ao)). 

L e t x  E E(t + s, Eo,Ao),thend(x, Ao) > t + s>>.t, thereforex E E(t, Eo, Ao). 
We shall show indirectly that  d(x,A(t ,  Eo,Ao))>s.  Let us assume the 

contrary,  then for every e > 0 there is a curve 7 E G such tha t  
7(0) E A(t, Eo,Ao)), 7(s("/)) = x, and -r(-'/)~<s + e. Hence there is ano ther  curve 
77 C G, which joins  A0 and 7(0), that  is 7?(0) c A0, r/(s(rl)) = -'/(0), and ~-(r/) ~< t + c. 
Let X E G be the connect ion  of  r / and  % that  is the first par t  of  )~ is r / and  the sec- 
ond  is 7. Therefore  "r(X) = "r(r/) + "r(7 ) ~< t + s + e; this yields d(x, Ao) <~ t + s, 
which is a contradict ion.  

N o w  we prove 



P.L. Simon, H. Farkas / Geometric theory of trigger waves 307 

E(s,E(t,  Eo, Ao),A(t, Eo,Ao)) C E(t + s, Eo,Ao). 

Let x E E(s,E(t,  Eo,Ao),A(t, Eo,Ao)), then x E V and we have to show tha t  
d(x, Ao) > t + s. F r o m  x E E(s, E(t, Eo, Ao), A(t, Eo, Ao)) follows that  there is e > 0 
such that  for every curve r / s t a r t ing  in A(t, Eo,Ao)) and ending in the point  x, 
T(r/)~>s+ e holds. We shall show that  if 9' E G, 3 '(0)E A0, 7 ( s ( 7 ) ) =  x, then 
7(3') 1> t + s + e, that  is d(x, Ao) > t + s. Let h(a := d(7(a),Ao), then h(0) = 0, 
h(s(7)) = d(x, Ao) > t and h is cont inuous;  therefore there exists/3 E (0, s(7)) such 
that  h(/3) = t. Hence 0'(/3) E A (t, E0, A0)) and  

"r(7 ) = "r(Tl[o,N) + 7-(T{[13,s(.r)l)/> t + s + c. 

N o w  let us prove 

A(t + s, Eo,Ao) C A(s,E(t,  Eo, Ao),A(t, Eo,Ao)). 

Let x E A (t + s, Eo, A o), then x E E (t, Eo, A o), and we can prove indirectly that  

d(x, A(t, Eo, Ao) = s. 

I f  d(x,A(t ,  Eo,Ao)<S,  then d(x, A o ) < t + s ,  which is a contradict ion.  I f  
d(x,A(t ,  Eo, Ao) >s,  then the previous par t  of  this p roo f  shows that  
x E E(t  + s, Eo, Ao), which is also a contradict ion.  

Finally we have to show that  

A(s,E(t,  Eo,Ao),A(t, Eo, Ao)) C A(t + s, Eo,Ao). 

Let x E A(s, E(t, Eo, Ao), A(t, Eo, Ao)). Using this previous par t  of  this p r o o f  it is 
easy to prove  indirectly that  d(x, Ao) = t + s. [] 

3. Extremals (ignition lines) 

A more  construct ive way to determine the process of  wave p ropaga t ion  is to 
define the extremals,  that  is the curves along which p ropaga t ion  takes places. 

According  to the pictorial  model  of  grass fire it is s t ra ight forward  to assume that  
in the wave model  the action may  propaga te  in the excitable media  a long any curve 
s tar t ing f rom an active point.  The action could reach an excitable point  a long dif- 
ferent curves, may  be star t ing f rom different active points,  but  really the act ion pro-  
pagates  only along exceptional  curves, extremals determined  by the F e r m a t  
min imal  t ime principle. In the act ivat ion process there is no difference between the 
active points  in activity, the intensity does not  play any role. (See In t roduct ion ,  
a s sumpt ion  (2).) 

THEOREM 2 
For  every x e V there exists 7 e G, such that  7(0) E Ao, 9'(s("/)) = x, and  

~-(7) = d(x, Ao). We refer to 7 as an extremal.  
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Proof 
F r o m  the definition of  d(x, Ao) follows that there is a sequence of  curves 

(7n) C G, such that  7n(0) C A0, 7n(s(%)) = x and "/-(%) tends to d(x, Ao) when n 
tends to infinity. Let D := d(x, Ao). From property  (2) of  ~- we get that  
s(7~) ~2D/ml for every n (we can assume that 7-(7~) ~2D) .  Let us extend the func- 
tions 7~ f rom the [0, s(7~)] to the interval [0, 2D/ml], so that  7~(a) = x for every 
a E [s(7~), 2D/ml]. Therefore we have a sequence of  functions -),n : [0, 2D/ml] ~ V, 
which is bounded and equicontinous, because 

- I s  - / 3 1 .  

Hence we can apply the Arzela-Ascoli  theorem; therefore there is a uniformly con- 
vergent subsequence of(')',,), which tends to a continuous curve 7. It is easy to prove 
that  the limit of  a uniformly convergent sequence of  rectifiable curves is also rectifi- 
able if the length of  the curves is bounded,  that  is 7 is a rectifiable curve. Since the 
set A0 is closed therefore 7(0) ¢ A0. It is obvious that the sequence 7n tends to 7 in 
the Hausdor f fme t r i c  too, hence property (3) of  7-yields that  7-(7) = d(x, Ao). Thus 
7/is an extremal.  []  

This theorem guaranties the existence of  the extremals, but does not  state any- 
thing about  uniqueness. Indeed, several points of  A0 can activate the same excitable 
point  at time t. On the other hand, an active point can activate several excitable 
points at the same time. 

4. T u b e  r e a c t o r  

Consider  a two dimensional semi-infinite rectangular tube reactor  with width L 
(Fig. 1). Assuming constant  velocity we prove that the asymptotic  shape of  the 
front  (that is the shape which the front takes after long time, i.e. far f rom the initial 
active set) is a line segment, which is perpendicular to the walls of  the tube. 

Now the reactor  is: V = R+ x [0, L]. For  the sake of  simplicity, we assume that  
v(x,y) = 1 at every (x,y) c V. Therefore 7-(7) is the length of  the curve for every 
rectifiable curve in V, and the extremals are straight lines. We prove the following 
theorem about  the asymptotic shape of  the wave front: 

T H E O R E M  3 

Let A0 be a bounded subset in V. Let 

K := sup{x C R + :  3y C [O,L],(x,y) E Ao}. 

Then for every e > 0 there exists T > 0 such that if t > T, then 

A(t, Eo,Ao) C [K + t -  e,K + t] × [O,L]. 
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I.. 

K÷t-s I ,÷l 

Fig. 1. 

This theorem states that the wave front at enough large time is contained in an 
arbi t rary thin (Q perpendicular section of  the tube. 

Proof 
Let T :=max{K,(e2+L2)/2e}  and t >  T. We show indirectly that if 

(x,y) EA(t ,  Eo,Ao), that  is d (x , y ) ,Ao )= t ,  then x E [ K + t - e , K + t ] .  I f  
x > K +  t, then d(x,y),Ao) > t for every y E [0, L], which is a contradiction. If  
x < K+ t-  e, then 

d((x ,y) ,Ao)<~(( t -e)  2 + L2) 1/2 

for every y E [0, L]. The definition of  T and t > T implies ((t - e) 2 + L2) 1/2 < t, 
thus d( (x, y), Ao) < t, which is a contradiction. 

5. A n n u l a r  r e a c t o r  

For  the case of  an annular  reactor with constant  velocity we show that  the wave 
front  will take the form of  an involute of  the inner curve of  the annulus within a 
finite time [9,20,21]. For  the sake of  simplicity, the reactor will be the unit disk B 
centred at the origin without  a closed, convex inner part  K C B (obstacle). 

We assume that there exist positive numbers 0 < rl < r2 < 1, such that  
B(rl) C K C B(r2). (B(r) denotes the disk with radius r and centred at the origin.) 
The reactor  is the set V = B \ i n t K .  Let v ( x , y ) =  1 for simplicity at every 
(x, y) C B \ in t  K. Therefore for every rectifiable curve in B \ int  K, T(7 ) is the length 
of  the curve. The outer boundary  of  the reactor should contain the disk B(r2), but 
might  be arbi t rary otherwise; for the sake of  simplicity we assumed that  it is a unit 
circle. 

We need the notion of  a supporting line of  a convex set [7]: 

DEFINITION 1 
Let C be a closed convex set on the plane. The line s is a supporting line of  the 

set C if: 
(i) C n S # e,  
(ii) C is in one of  the half  planes determined by s. 
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The following elementary lemma will play an important  role in our train of  
thought.  

L E M M A  2 

Let I" be a simple closed curve on the plane, and let C be a closed convex set in 
the bounded domain determined by 1-'. Then the circumference of the set C is not 
greater than the length of the curve I'. 

Now we shall determine the shortest rectifiable curve between two given points 
P and Q in B \ int  K, such a curve will be called an extremal. Let s(P, Q) denote the 
segment between two points P and Q. 

If  the segment s(P, Q) has no common point with the interior of the set K, that  
is s(P, Q) A intK = ®, then the extremal curve between P and Q is the segment 
s(P, Q). 

Ifs(P,  Q) N intK ¢- ®, then let ep and eQ be those supporting lines which contain 
P resp. Q, and lie in the right half  plane determined by the line PQ (Fig. 2). 
Similarly, let us denote withfp andfQ the supporting lines in the left half  plane. Let 
Et, be the point of et, A K nearest to the point P, and let EQ be the point of eQ fq K 
nearest to the point Q. The definitions of Fp and FQ are similar (Fig. 2). 

The following statement is a simple consequence of Lemma 2: 

L E M M A  3 

The extremal between the points P and Q is one of the following curves: 

(1) The curve PE?EQQ, which consists of  the segment s(P, E?), the border of the 
set K from the point Ep to the point EQ and the segment s(Ea, Q). 

(2) The curve PFpFQQ, which is similar to the previous one but lies in the other half  
plane. 

P 

P 

0 

Fig. 2. 
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I f  these two curves have the same length, then both of  them are extremals. 

We recall the definition of  the involute and an important  property  of  it [8,10]. 
The involutes of  a smooth curve 3' are those curves which are orthogonal  to the tan- 
gent lines of  the curve 3'. The following proposition is a simple consequence of  the 
definition. 

PROPOSITION 

Let us consider that involute p of  the curve 3  ̀which contains a point  Q of  3' 
(Fig. 3). For  every point R of  the involute p the length of  the tangent  f rom R to the 
curve 3' is equal to the arc length of  3  ̀between the tangent  point and Q. 

This proposit ion gives the following pictorial meaning to the involute: the invo- 
lute of  7 is the locus of  the end point of  a string which is laid along the curve 7 and 
unwrapped.  

We can extend the notion of  the involute from the smooth  curves to the border  
of  a closed convex set. For  this purpose we have to generalize the notion of  the tan- 
gent to the case of  convex sets. A straightforward generalization is the supporting 
line of  a convex set. Let C be a closed convex set, and let P, Q E OC be two points on 
the border  o f t .  Let L denote the distance of  these points on the border  (in one of  the 
two possible directions). Let 3' : [0, L] ~ OC be the corresponding curve on the bor- 
der, hence "/(0) = P and 3`(L) = Q. The orientation of 3' induces an orientat ion on 
the supporting lines. We shall divide the supporting lines having a c o m m o n  point 
with 3  ̀in two half  lines (Fig. 4). Let s be a supporting line and let S be that  point of  
s N 3' which has the greatest parameter  value on 3  ̀(S is the last c o m m o n  point). I f s  
has more  than one point common with 3', then the orientation on s is yielded trivi- 
ally. If s and 3  ̀has only one common point (S in Fig. 4), then the introduct ion of  the 
orientat ion on s can also be carried out uniquely in a natural  way. Let us denote the 
half  line corresponding to the induced positive orientation by s +. We call s + the 
positive supporting half line. 

Fig. 3. 



s + S 

Fig. 4. 

A 

DEFINITION 2 
The involutes of the curve 7 are those curves which are orthogonal to the positive 

supporting half lines of the convex set C. 

REMARK 

The rigorous definition of the involute would need the notion of the positive tan- 
gent even in the case of smooth curves, because the unique construction of the 
orthogonal trajectories requires that different tangent lines have no common 
point. 

EXAMPLE 
Let C be the triangle ABC,  and let 3' be the union of the segments CB and BA 

(Fig. 5). The involute of the curve 7 containing the point A is a circle with centre at 
the point B in the upper half plane determined by the line BC, in the lower half plane 
the involute is a circle with centre at the point C. 

Now we show that the property of the involutes formulated in the above proposi- 
tion for smooth curves is preserved for the present involute concept of border lines 
of convex sets. Let R be a point outside the convex set C, we shall denote with s+(R) 
the positive supporting half line which contains the point R, and we denote by E(R)  
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P.L. Simon, H. Farkas / Geometric theory of trigger waves 313 

the point  ofs+(R) M 3' closest to R (Fig. 6). Using Definition 2, the following lemma 
is obvious. 

LEMMA 4 
Let 3' be the curve on the border of  the convex set C as we defined in connection 

with s + (Fig. 6). Let us consider that involute p of  the curve 3" which contains the 
point  Q. For every point R of the involute p the length of the segment joining the 
point R with the point E(R) is equal to the arc length of  3, between the point E(R) 
and Q. 

Now we can revert to the problem of annular reactors. Let us recall that K is a 
closed convex set and the annular reactor is B \ int  K. From Lemma 3 and Lemma 4, 
one can get the following 

COROLLARY 
Let P, Q E OK be two points on the border of the set K, and L be the arc length 

of the border OK between the points P and Q (in one direction). Let s be a support- 
ing line containing the point P; let us denote with h that half  plane determined by 
the line s which contains the point Q. Let p be that involute of OK which contains 
the point  Q. Then for every R E p A h the length of the shortest curve in V from the 
point  R to the point P is L. 

Before we state our main theorem we have to specify the initial wave front A0 
from which the front will be an involute after finite time. 

Let F E OK and G E OB be two points, such that  the segment 
s(F, G) C B \ int  K (Fig. 7). Let tbe a supporting line of the set K, which has no com- 
mo n  point  with the segment s(F, G). Let T E t C3 OK be a point, and let us denote by 
M and N the intersection points of the line t with the unit circle OB. We shall denote 
by M T F G  the closed domain determined by the simple closed curve, which consists 
of the following four parts: the segment s(M, T); the border of the set K between 
the points T and F; the segment s(F, G); the arc of the unit circle OB between the 
points G and M. Similarly we shall use the notat ion NTFG for the corresponding 
domain.  

R 
! 

s+[R] E[R] 

Fig. 6. 
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NA t T \M  

MTFG 

NTFG 

Fig. 7. 

Starting f rom an initial wave front  the wave propagates both forward and back- 
ward  (anticlockwise and clockwise). In order to allow a wave (say anticlockwise) to 
make  a whole round we should "kil l" the other (clockwise) one. For  this reason we 
redefine the reactor V excluding the segment s(F, G). 

THEOREM 4 

Let A0 C B \ int  K be a closed set for which there exist the points F E OK, 
G E OB and the supporting line t according to the conditions above, moreover  
Ao C MTFG and A0 n s(F, G) = (3. Let V := B \ int  K\s(F, G) and E0 := V\Ao. 
Then the part  of  the wave front  A(t, Eo, Ao) contained in the domain  NTFG is an 
involute of  the border  of  the set K. 

R E M A R K  

The theorem states that a part  of  the wave front  will be an involute in a finite time 
(when the front  reaches the domain NTFG). The definition of  the set V causes that  
the front  moves only anticlockwise in the annulus, because it cannot  cross the seg- 
ment  s( F, G). 

Proof 
The essential point of  the proof  is the following: if R is a point in the domain  

NTFG, then the shortest curve from R to A0 must contain the point T, that  is the 
front  in the domain  NTFG is the same as the initial front would be only at the point 
T; in other  words, T is the ignition point of  the front in the domain  NTFG. 

According to Lemma 3, the shortest curve from R to A0 passes through one of  
the supporting lines determined by the point R. But one of  them is excluded because 
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the front cannot cross the segment s(F, G); therefore the shortest curve contains 
the point T. 

We recall that d(P,  Ao) denotes the length of the shortest curve between a point 
P and A0. Let l := d(T ,  Ao). Hence d(R, Ao) = l + d(R,  r ) ,  where d(R,  T) denotes 
the length of  the shortest curve between the points R and T. Let L > l be a number 
for which the point Q E OK determined by the equality d(Q, T) = L - l is on the 
arc OK between the points T and F. Then for any point R c NTFG the equality 
d( R, Ao ) = L is equivalent to d( R, T) = L - l, which is equivalent, according to the 
corollary, to the fact that R is on the involute containing the point Q. This com- 
pletes the proof. [ ]  
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